Advertisement
Original Article| Volume 28, ISSUE 2, P403-407, March 2023

Changes in patellar height after anatomical ACL reconstruction with BTB autograft with a focus on patellar tendon removal volume

Published:January 04, 2022DOI:https://doi.org/10.1016/j.jos.2021.12.007

      Abstract

      Background

      Although anatomical anterior cruciate ligament reconstruction (ACLR) can provide satisfactory outcomes, little is known about how this procedure impacts patellar height. Since harvesting bone-patellar tendon-bone (BTB) autografts is a potential risk factor for decreased patellar height, we examined changes in patellar height after anatomical ACLR with BTB autograft with a focus on the size of the harvested graft.

      Methods

      Subjects were 84 patients (49 males, 35 females; mean age, 23 years) who underwent primary anatomical ACLR with central third BTB autograft. Preoperative to postoperative Caton-Deschamps index (CDI) ratio was calculated using lateral knee radiographs before and 6 months after surgery. The length and cross-sectional area (CSA) of the graft were measured intraoperatively, and the CSA of the contralateral patellar tendon was measured by ultrasound 6 months postoperatively. The difference in graft CSA relative to the contralateral tendon CSA, expressed as a percentage (gCSA:ctCSA percentage), was also calculated.

      Results

      Patellar height decreased slightly after surgery (preoperative CDI: 0.856 ± 0.113; postoperative CDI: 0.841 ± 0.113), with a mean difference between preoperative and postoperative CDIs of −0.015 (range: −0.293 to 0.101). Although the CDI of male subjects significantly decreased after surgery (preoperative: 0.852 ± 0.117; postoperative: 0.827 ± 0.115), no significant changes were noted in female subjects (preoperative: 0.862 ± 0.108; postoperative: 0.861 ± 0.108). Graft length and CSA did not significantly impact the CDI ratio (r = −0.138 and r = −0.038, respectively). Moreover, no significant relationship was observed between the gCSA:ctCSA percentage and CDI ratio (r = 0.118).

      Conclusions

      Although patellar height slightly, but significantly, decreased at 6 months after anatomical ACLR with BTB autograft, it was not affected by the length and CSA of harvested grafts. The decrease in postoperative patellar height was observed only in male subjects, suggesting the potential importance of sex differences in soft tissue healing during the postoperative period.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Orthopaedic Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shino K.
        • Nakata K.
        • Nakamura N.
        • Toritsuka Y.
        • Horibe S.
        • Nakagawa S.
        • et al.
        Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement.
        Arthroscopy. 2008 Oct; 24: 1178-1183
        • Shino K.
        • Nakata K.
        • Nakamura N.
        • Toritsuka Y.
        • Nakagawa S.
        • Horibe S.
        Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique.
        Arthroscopy. 2005 Nov; 21: 1402
        • Shino K.
        • Suzuki T.
        • Iwahashi T.
        • Mae T.
        • Nakamura N.
        • Nakata K.
        • et al.
        The resident's ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2010 Sep; 18: 1164-1168
        • Tachibana Y.
        • Shino K.
        • Mae T.
        • Iuchi R.
        • Take Y.
        • Nakagawa S.
        Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft.
        Knee Surg Sports Traumatol Arthrosc. 2019 Aug; 27: 2680-2690
        • Huang W.
        • Ong T.Y.
        • Fu S.C.
        • Yung S.H.
        Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: a systematic review.
        J Orthop Translat. 2019 Aug; 6: 14-25
        • Culvenor A.G.
        • Lai C.C.
        • Gabbe B.J.
        • Makdissi M.
        • Collins N.J.
        • Vicenzino B.
        • et al.
        Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction.
        Br J Sports Med. 2014 Mar; 48: 435-439
        • Bei M.
        • Tian F.
        • Liu N.
        • Zheng Z.
        • Cao X.
        • Zhang H.
        • et al.
        A novel rat model of patellofemoral osteoarthritis due to patella baja, or low-lying patella.
        Med Sci Mon Int Med J Exp Clin Res. 2019 Apr; 13: 2702-2717
        • Mills K.
        • Hunter D.J.
        Patellofemoral joint osteoarthritis: an individualised pathomechanical approach to management.
        Best Pract Res Clin Rheumatol. 2014 Feb; 28: 73-91
        • Elahi S.
        • Cahue S.
        • Felson D.T.
        • Engelman L.
        • Sharma L.
        The association between varus-valgus alignment and patellofemoral osteoarthritis.
        Arthritis Rheum. 2000 Aug; 43: 1874-1880
        • Adam F.
        • Pape D.
        • Kohn D.
        • Seil R.
        Length of the patellar tendon after anterior cruciate ligament reconstruction with patellar tendon autograft: a prospective clinical study using Roentgen stereometric analysis.
        Arthroscopy. 2002 Oct; 18: 859-864
        • Hantes M.E.
        • Zachos V.C.
        • Liantsis A.
        • Venouziou A.
        • Karantanas A.H.
        • Malizos K.N.
        Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study.
        Knee Surg Sports Traumatol Arthrosc. 2009 Aug; 17: 880-886
        • Moebius U.G.
        • Georgoulis A.D.
        • Papageorgiou C.D.
        • Papadonikolakis A.
        • Rossis J.
        • Soucacos P.N.
        Alterations of the extensor apparatus after anterior cruciate ligament reconstruction using the medial third of the patellar tendon.
        Arthroscopy. 2001 Nov-Dec; 17: 953-959
        • Muellner T.
        • Kaltenbrunner W.
        • Nikolic A.
        • Mittlboeck M.
        • Schabus R.
        • Vecsei V.
        Shortening of the patellar tendon after anterior cruciate ligament reconstruction.
        Arthroscopy. 1998 Sep; 14: 592-596
        • Adriani E.
        • Mariani P.P.
        • Maresca G.
        • Santori N.
        Healing of the patellar tendon after harvesting of its mid-third for anterior cruciate ligament reconstruction and evolution of the unclosed donor site defect.
        Knee Surg Sports Traumatol Arthrosc. 1995; 3: 138-143
        • Brandsson S.
        • Faxen E.
        • Eriksson B.I.
        • Kalebo P.
        • Sward L.
        • Lundin O.
        • et al.
        Closing patellar tendon defects after anterior cruciate ligament reconstruction: absence of any benefit.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: 82-87
        • Ferrari J.D.
        • Bach Jr., B.R.
        Bone graft procurement for patellar defect grafting in anterior cruciate ligament reconstruction.
        Arthroscopy. 1998 Jul-Aug; 14: 543-545
        • Tsuda E.
        • Okamura Y.
        • Ishibashi Y.
        • Otsuka H.
        • Toh S.
        Techniques for reducing anterior knee symptoms after anterior cruciate ligament reconstruction using a bone-patellar tendon-bone autograft.
        Am J Sports Med. 2001 Jul-Aug; 29: 450-456
        • Li H.H.
        • Zhang X.L.
        • Ooi G.
        • Hironori N.
        • Sekiguchi M.
        • Konno S.I.
        MRI observations of patellar tendon length change after ACL reconstruction with hamstring autografts.
        J Huazhong Univ Sci Technolog Med Sci. 2017 Aug; 37: 577-581
        • Burks R.T.
        • Haut R.C.
        • Lancaster R.L.
        Biomechanical and histological observations of the dog patellar tendon after removal of its central one-third.
        Am J Sports Med. 1990 Mar-Apr; 18: 146-153
        • Kanamoto T.
        • Tanaka Y.
        • Yonetani Y.
        • Kita K.
        • Amano H.
        • Okamoto K.
        • et al.
        Sex differences in the residual patellar tendon after harvesting its central third for anterior cruciate ligament reconstruction.
        J Ultrasound Med. 2018 Mar; 37: 755-761
        • Kartus J.
        • Movin T.
        • Papadogiannakis N.
        • Christensen L.R.
        • Lindahl S.
        • Karlsson J.
        A radiographic and histologic evaluation of the patellar tendon after harvesting its central third.
        Am J Sports Med. 2000 Mar-Apr; 28: 218-226
        • Svensson M.
        • Movin T.
        • Rostgard-Christensen L.
        • Blomen E.
        • Hultenby K.
        • Kartus J.
        Ultrastructural collagen fibril alterations in the patellar tendon 6 years after harvesting its central third.
        Am J Sports Med. 2007 Feb; 35: 301-306
        • Bartlett R.J.
        • Clatworthy M.G.
        • Nguyen T.N.
        Graft selection in reconstruction of the anterior cruciate ligament.
        J Bone Joint Surg Br. 2001 Jul; 83: 625-634
        • Mohtadi N.G.
        • Chan D.S.
        • Dainty K.N.
        • Whelan D.B.
        Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults.
        Cochrane Database Syst Rev. 2011 Sep; 7: CD005960
        • Oikawa R.
        • Tajima G.
        • Yan J.
        • Maruyama M.
        • Sugawara A.
        • Oikawa S.
        • et al.
        Morphology of the patellar tendon and its insertion sites using three-dimensional computed tomography: a cadaveric study.
        Knee. 2019 Mar; 26: 302-309
        • Suzuki T.
        • Shino K.
        • Nakagawa S.
        • Nakata K.
        • Iwahashi T.
        • Kinugasa K.
        • et al.
        Early integration of a bone plug in the femoral tunnel in rectangular tunnel ACL reconstruction with a bone-patellar tendon-bone graft: a prospective computed tomography analysis.
        Knee Surg Sports Traumatol Arthrosc. 2011 Dec; 19: S29-S35
        • Suzuki T.
        • Shino K.
        • Otsubo H.
        • Suzuki D.
        • Mae T.
        • Fujimiya M.
        • et al.
        Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft.
        Arthroscopy. 2014 Oct; 30: 1294-1302
        • Iwahashi T.
        • Shino K.
        • Nakata K.
        • Otsubo H.
        • Suzuki T.
        • Amano H.
        • et al.
        Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography.
        Arthroscopy. 2010 Sep; 26: S13-S20
        • Tanaka Y.
        • Shiozaki Y.
        • Yonetani Y.
        • Kanamoto T.
        • Tsujii A.
        • Horibe S.
        MRI analysis of the attachment of the anteromedial and posterolateral bundles of anterior cruciate ligament using coronal oblique images.
        Knee Surg Sports Traumatol Arthrosc. 2011 Dec; 19: S54-S59
        • Kusano M.
        • Yonetani Y.
        • Mae T.
        • Nakata K.
        • Yoshikawa H.
        • Shino K.
        Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: a histological and computed tomographic study.
        Knee. 2017 Aug; 24: 782-791
        • Yonetani Y.
        • Kusano M.
        • Tsujii A.
        • Kinugasa K.
        • Hamada M.
        • Shino K.
        Tibial insertion of the anterior cruciate ligament and anterior horn of the lateral meniscus share the lateral slope of the medial intercondylar ridge: a computed tomography study in a young, healthy population.
        Knee. 2019 Jun; 26: 612-618
        • Hamada M.
        • Shino K.
        • Horibe S.
        • Mitsuoka T.
        • Toritsuka Y.
        • Nakamura N.
        Changes in cross-sectional area of hamstring anterior cruciate ligament grafts as a function of time following transplantation.
        Arthroscopy. 2005 Aug; 21: 917-922
        • Kinugasa K.
        • Hamada M.
        • Yoneda K.
        • Matsuo T.
        • Mae T.
        • Shino K.
        Cross-sectional area of hamstring tendon autograft after anatomic triple-bundle ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2017 Apr; 25: 1219-1226
        • Anagnostakos K.
        • Lorbach O.
        • Reiter S.
        • Kohn D.
        Comparison of five patellar height measurement methods in 90 degrees knee flexion.
        Int Orthop. 2011 Dec; 35: 1791-1797
        • Shino K.
        • Mitsuoka T.
        • Horibe S.
        • Hamada M.
        • Nakata K.
        • Nakamura N.
        The gravity sag view: a simple radiographic technique to show posterior laxity of the knee.
        Arthroscopy. 2000 Sep; 16: 670-672
        • Phillips C.L.
        • Silver D.A.
        • Schranz P.J.
        • Mandalia V.
        The measurement of patellar height: a review of the methods of imaging.
        J Bone Joint Surg Br. 2010 Aug; 92: 1045-1053
        • Kositsky A.
        • Goncalves B.A.M.
        • Stenroth L.
        • Barrett R.S.
        • Diamond L.E.
        • Saxby D.J.
        Reliability and validity of ultrasonography for measurement of hamstring muscle and tendon cross-sectional area.
        Ultrasound Med Biol. 2020 Jan; 46: 55-63