Advertisement

Risk factors for nonunion in oblique lateral interbody fusion

Published:November 18, 2022DOI:https://doi.org/10.1016/j.jos.2022.10.022

      Abstract

      Background

      Compared with posterior interbody fusion techniques, oblique lateral interbody fusion (OLIF) offers a larger fusion bed with greater intervertebral space access, use of larger cages, more sufficient discectomy, and better end-plate preparation. However, the fusion rate of OLIF is similar to that of other interbody fusions. This study aimed to examine the factors associated with nonunion in OLIF.

      Methods

      This study examined 201 disc levels from 124 consecutive patients who underwent OLIF for lumbar degenerative diseases with 1-year regular follow-up. Demographic and surgical factors were reviewed from the medical records. Radiological factors measured were sagittal parameters, intervertebral disc angle (DA) before surgery and at the final follow-up, presence of vertebral end-plate lesions, and cage subsidence. Multivariable logistic regression analysis was performed to identify the factors associated with nonunion.

      Results

      Among the 201 discs, 185 (92.0%) achieved union at 1-year followed up. Smoking, surgery at the L5-S1 level, not performing laminectomy, and a large intervertebral DA were factors associated with nonunion in OLIF (all P < 0.05). Multivariable logistic regression analysis showed two independent variables (surgery at L5-S1 level and not performing laminectomy) as risk factors for nonunion in OLIF.

      Conclusions

      Not performing laminectomy and surgery at the L5-S1 level were risk factors for nonunion in OLIF. To reduce the nonunion rate, surgeons should consider additional stabilization strategies for the L5-S1 OLIF and perform laminectomy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Orthopaedic Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee C.
        • Dorcil J.
        • Radomisli T.E.
        Nonunion of the spine: a review.
        Clin Orthop Relat Res®. 2004 Feb; 419: 71-75
        • Stauffer R.N.
        • Coventry M.B.
        Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series.
        J Bone Jt Surg Am Vol. 1972 Jun; 54: 756-768
        • Stauffer R.N.
        • Coventry M.B.
        Posterolateral lumbar-spine fusion. Analysis of Mayo Clinic series.
        J Bone Jt Surg Am Vol. 1972 Sep; 54: 1195-1204
        • Rothman R.H.
        • Booth R.
        Failures of spinal fusion.
        Orthop Clin N Am. 1975 Jan; 6: 299-304
      1. Hynes R. Oblique lateral interbody fusion (OLIF) technique and complications in 457 levels L1 to S1. Int Society for the Advancement of Spine Surg, 2014
        • Shimizu T.
        • Fujibayashi S.
        • Otsuki B.
        • Murata K.
        • Matsuda S.
        Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: a comparative study with direct decompression transforaminal/posterior lumbar interbody fusion.
        Spine J. 2021 Jun; 21: 963-971
        • Li H.M.
        • Zhang R.J.
        • Shen C.L.
        Radiographic and clinical outcomes of oblique lateral interbody fusion versus minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar disease.
        World Neurosurg. 2019 Feb; 122: e627-e638
        • Chang M.C.
        • Kim G.U.
        • Choo Y.J.
        • Lee G.W.
        Transforaminal lumbar interbody fusion (TLIF) versus oblique lumbar interbody fusion (OLIF) in interbody fusion technique for degenerative spondylolisthesis: a systematic review and meta-analysis.
        Life. 2021 Jul; 11: 696
        • Konomi T.
        • Yasuda A.
        • Fujiyoshi K.
        • Yato Y.
        • Asazuma T.
        Incidences and risk factors for postoperative non-union after posterior lumbar interbody fusion with closed-box titanium spacers.
        Asian Spine J. 2020 Feb; 14: 106-112
      2. Update on the diagnosis and treatment of lumbar nonunions.
        in: Seminars in spine surgery. vol. 20. Elsevier, 2008 Mar: 20-26 (1)
        • Bydon M.
        • De la Garza-Ramos R.
        • Abt N.B.
        • Gokaslan Z.L.
        • Wolinsky J.P.
        • Sciubba D.M.
        • et al.
        Impact of smoking on complication and pseudarthrosis rates after single- and 2-level posterolateral fusion of the lumbar spine.
        Spine. 2014 Oct; 39: 1765-1770
        • Emami A.
        • Faloon M.
        • Sahai N.
        • Dunn C.J.
        • Issa K.
        • Thibaudeau D.
        • et al.
        Risk factors for pseudarthrosis in minimally invasive transforaminal lumbar interbody fusion.
        Asian Spine J. 2018 Oct; 12: 830
        • Bridwell K.H.
        • Lenke L.G.
        • McEnery K.W.
        • Baldus C.
        • Blanke K.
        Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects?.
        Spine. 1995 Jun; 20: 1410-1418
        • Woods K.R.
        • Billys J.B.
        • Hynes R.A.
        Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates.
        Spine J. 2017 Apr; 17: 545-553
        • Schizas C.
        • Theumann N.
        • Burn A.
        • Tansey R.
        • Wardlaw D.
        • Smith F.W.
        • et al.
        Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images.
        Spine. 2010 Oct; 35: 1919-1924
        • Hughes J.R.
        • Peters E.N.
        • Naud S.
        Relapse to smoking after 1 year of abstinence: a meta-analysis.
        Addict Behav. 2008 Dec; 33: 1516-1520
        • Stahre M.
        • Roeber J.
        • Kanny D.
        • Brewer R.D.
        • Zhang X.
        Contribution of excessive alcohol consumption to deaths and years of potential life lost in the United States.
        Prev Chronic Dis. 2014 Jun; 11: E109
        • Chung N.S.
        • Lee H.D.
        • Jeon C.H.
        The impact of vertebral end plate lesions on the radiological outcome in oblique lateral interbody fusion.
        Global Spine J. 2021 Oct; 11: 1176-1182
        • Kim M.C.
        • Chung H.T.
        • Cho J.L.
        • Kim D.J.
        • Chung N.S.
        Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion.
        J Spine Disord Tech. 2013 Apr; 26: 87-92
        • Noshchenko A.
        • Lindley E.M.
        • Burger E.L.
        • Cain C.M.J.
        • Patel V.V.
        What is the clinical relevance of radiographic nonunion after single-level lumbar interbody arthrodesis in degenerative disc disease?: a meta-analysis of the YODA project database.
        Spine. 2016 Jan; 41: 9-17
        • Tannoury C.
        • Bhale R.
        • Vora M.
        • Saade A.
        • Kortbawi R.
        • Orlando G.
        • et al.
        Pseudarthrosis following lumbar and lumbosacral fusion using the antepsoas technique.
        Spine. 2021 Dec; 46: 1690-1695
        • Patel R.A.
        • Wilson R.F.
        • Patel P.A.
        • Palmer R.M.
        The effect of smoking on bone healing: a systematic review.
        Bone & Jt Res. 2013 Jun; 2: 102-111
        • Andersen T.
        • Christensen F.B.
        • Laursen M.
        • Høy K.
        • Hansen E.S.
        • Bünger C.
        Smoking as a predictor of negative outcome in lumbar spinal fusion.
        Spine. 2001 Dec; 26: 2623-2628
        • Glassman S.D.
        • Anagnost S.C.
        • Parker A.
        • Burke D.
        • Johnson J.R.
        • Dimar J.R.
        The effect of cigarette smoking and smoking cessation on spinal fusion.
        Spine. 2000 Oct; 25: 2608-2615
        • White A.A.
        • Panjabi M.M.
        Clinical biomechanics of the spine.
        Lippincott Williams & Wilkins, 1990
        • Lastfogel J.F.
        • Altstadt T.J.
        • Rodgers R.B.
        • Horn E.M.
        Sacral fractures following stand-alone L5–S1 anterior lumbar interbody fusion for isthmic spondylolisthesis.
        J Neurosurg Spine. 2010 Aug; 13: 288-293
        • Kimura H.
        • Shikata J.
        • Odate S.
        • Soeda T.
        • Yamamura S.
        Risk factors for cage retropulsion after posterior lumbar interbody fusion: analysis of 1070 cases.
        Spine. 2012 Jun; 37: 1164-1169
        • Malham G.M.
        • Parker R.M.
        • Goss B.
        • Blecher C.M.
        Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study.
        Eur Spine J. 2015 Apr; 24 (Supplement 3): 339-345
        • Lee K.K.
        • Teo E.C.
        Effects of laminectomy and facetectomy on the stability of the lumbar motion segment.
        Med Eng Phys. 2004 Apr; 26: 183-192
        • Lee C.K.
        Lumbar spinal instability (olisthesis) after extensive posterior spinal decompression.
        Spine. 1983 May-Jun; 8: 429-433